Chapter 10: Rotational Motion Thursday February $26^{\text {th }}$

- Discussion of the mid-term exam
- Review of Mini Exam III
-Intro. to rotational motion (not on mid-term)
- Definition of rotational variables
-Rotational Kinematics
- Examples and iclicker

Mid-term Exam on Tuesday:

- Full class period - 1 hr 15 mins
- Cumulative - will cover everything up to and incl. LONCAPA \#12
- Monday recitation for review; see online review material
- No labs next week; next labs right after spring break
- Wednesday back to normal schedule with LONCAPA \#13

Reading: up to page 158 + page 167 in Ch. 10

Translation and Rotation

Translation

Rotation

Translation + rotation

Translation and Rotation
Translation

Rigid body

Translation + rotation

The rotational variables (scalar notation)

Angular position:

- s is the length of the arc from the x-axis ($\theta=0 \mathrm{rad}$) to the reference line (at angle θ), at constant radius r.
- The angle θ is measured in radians (rad), which is a ratio of arc length to radius; it is, therefore, a dimensionless quantity.

$$
\begin{aligned}
& 1 \text { revolution }=360^{\circ}=\frac{2 \pi r}{r}=2 \pi \mathrm{rad} \\
& 1 \mathrm{rad}=\frac{360^{\circ}}{2 \pi}=57.3^{\circ}=0.159 \mathrm{revolutions}
\end{aligned}
$$

The rotational variables (scalar notation)

Angular displacement:

$$
\Delta \theta=\theta_{2}-\theta_{1}
$$

An Angular displacement in the counterclockwise direction about an axis (usually the z-axis) is positive, and one in the clockwise direction is negative.

The rotational variables (scalar notation)

Average angular velocity: $\quad \omega_{\text {avg }}=\frac{\theta_{2}-\theta_{1}}{t_{2}-t_{1}}=\frac{\Delta \theta}{\Delta t}$

Instantaneous angular velocity:

$$
\omega=\operatorname{Lim}_{\Delta t \rightarrow 0} \frac{\Delta \theta}{\Delta t}=\frac{d \theta}{d t}
$$

Units of angular velocity are rad.s ${ }^{-1}$ [strictly speaking a frequency, s^{-1}]

The rotational variables (scalar notation)

Average angular acceleration: $\quad \alpha_{\text {avg }}=\frac{\omega_{2}-\omega_{1}}{t_{2}-t_{1}}=\frac{\Delta \omega}{\Delta t}$
Instantaneous angular acceleration: $\quad \alpha=\operatorname{Lim}_{\Delta t \rightarrow 0} \frac{\Delta \omega}{\Delta t}=\frac{d \omega}{d t}$

Units of angular acceleration are rad.s ${ }^{-2}$ [i.e., s^{-2}]

Rotation at constant angular acceleration

THE SAME OLD KINEMATIC EQUATIONS

Equation number

$$
10.7
$$

Missing
Equation quantity

$$
\omega=\omega_{0}+\alpha t
$$

$$
\theta-\theta_{0}
$$

10.8

$$
\theta-\theta_{0}=\omega_{0} t+\frac{1}{2} \alpha t^{2}
$$

$$
\omega
$$

$$
10.9
$$

$$
\omega^{2}=\omega_{0}^{2}+2 \alpha\left(\theta-\theta_{0}\right)
$$

10.6

$$
\begin{align*}
& \theta-\theta_{0}=\bar{\omega} t=\frac{1}{2}\left(\omega_{0}+\omega\right) t \\
& \theta-\theta_{0}=\omega t-\frac{1}{2} \alpha t^{2} \tag{0}
\end{align*}
$$

$$
\alpha
$$

Important: equations apply ONLY if angular acceleration is constant.

Transformation between linear \& rotational variables

Angular position: $\theta=\frac{s}{r} \quad$ (in radians)
Tangential velocity: $\quad v_{t}=\frac{d s}{d t}=\frac{d \theta}{d t} r=\omega r$
Time period for rotation: $\quad T=\frac{\text { circumference }}{\text { velocity }}=\frac{2 \pi r}{v}=\frac{2 \pi}{\omega}$

Rolling motion

$s=\theta R$

The wheel moves with speed $d s / d t$

$$
\Rightarrow v_{c o m}=\omega R
$$

Transformation between linear \& rotational variables

Angular position: $\theta=\frac{s}{r} \quad$ (in radians)
Tangential velocity: $\quad v_{t}=\frac{d s}{d t}=\frac{d \theta}{d t} r=\omega r$
Tangential acceleration: $\quad a_{t}=\frac{d v_{t}}{d t}=\frac{d \omega}{d t} r=\alpha r$

