Chapter 10: Rotational Motion Thursday February 26th

- ·Discussion of the mid-term exam
- Review of Mini Exam III
- ·Intro. to rotational motion (not on mid-term)
- Definition of rotational variables
- ·Rotational Kinematics
- ·Examples and iclicker

Mid-term Exam on Tuesday:

- Full class period 1hr 15 mins
- Cumulative will cover everything up to and incl. LONCAPA #12
- Monday recitation for review; see online review material
- No labs next week; next labs right after spring break
- Wednesday back to normal schedule with LONCAPA #13

Reading: up to page 158 + page 167 in Ch. 10

Translation and Rotation

Translation Rotation

Translation + rotation

Translation and Rotation

Translation

Rigid, body

Translation + rotation

Fixed axis

Reference line

The full circumference is $2\pi r$, so 1 revolution is 2π radians. That makes 1 radian $360^{\circ}/2\pi$ or about 57.3° .

Angular position:

$$\theta = \frac{s}{r}$$
 (in radians)

- s is the length of the arc from the x-axis ($\theta = 0$ rad) to the reference line (at angle θ), at constant radius r.
- The angle θ is measured in radians (rad), which is a ratio of arc length to radius; it is, therefore, a dimensionless quantity.

 1 revolution = $360^{\circ} = \frac{2\pi r}{100^{\circ}} = 2\pi rad$

1 revolution =
$$360^{\circ} = \frac{1}{r} = 2\pi \text{ rad}$$

1 rad = $\frac{360^{\circ}}{2\pi} = 57.3^{\circ} = 0.159 \text{ revolutions}$

Angular displacement: $\Delta \theta = \theta_2 - \theta_1$

An Angular displacement in the counterclockwise direction about an axis (usually the z-axis) is positive, and one in the clockwise direction is negative.

Average angular velocity:

$$\omega_{avg} = \frac{\theta_2 - \theta_1}{t_2 - t_1} = \frac{\Delta \theta}{\Delta t}$$

Instantaneous angular velocity:

$$\omega = \lim_{\Delta t \to 0} \frac{\Delta \theta}{\Delta t} = \frac{d\theta}{dt}$$

Units of angular velocity are rad.s⁻¹ [strictly speaking a frequency, s⁻¹]

Average angular acceleration:

$$\alpha_{avg} = \frac{\omega_2 - \omega_1}{t_2 - t_1} = \frac{\Delta \omega}{\Delta t}$$

Instantaneous angular acceleration:
$$\alpha = \lim_{\Delta t \to 0} \frac{\Delta \omega}{\Delta t} = \frac{d\omega}{dt}$$

Units of angular acceleration are rad.s⁻² [i.e., s⁻²]

Rotation at constant angular acceleration

THE SAME OLD KINEMATIC EQUATIONS

Equation		Missing
number	Equation	quantity
10.7	$\omega = \omega_0 + \alpha t$	$\theta - \theta_0$
10.8	$\theta - \theta_0 = \omega_0 t + \frac{1}{2} \alpha t^2$	ω
10.9	$\omega^2 = \omega_0^2 + 2\alpha(\theta - \theta_0)$	t
10.6	$\theta - \theta_0 = \overline{\omega}t = \frac{1}{2}(\omega_0 + \omega)t$	α
	$\theta - \theta_0 = \omega t - \frac{1}{2}\alpha t^2$	$\boldsymbol{\omega}_{\scriptscriptstyle 0}$

Important: equations apply ONLY if angular acceleration is constant.

Transformation between linear & rotational variables

Angular position:
$$\theta = \frac{S}{r}$$
 (in radians)

Tangential velocity:
$$v_t = \frac{ds}{dt} = \frac{d\theta}{dt}r = \omega r$$

Time period for rotation:
$$T = \frac{\text{circumference}}{\text{velocity}} = \frac{2\pi r}{v} = \frac{2\pi}{\omega}$$

Rolling motion

$$S = \theta R$$

The wheel moves with speed ds/dt

$$\Rightarrow v_{com} = \omega R$$

Transformation between linear & rotational variables

Angular position:
$$\theta = \frac{S}{r}$$
 (in radians)

Tangential velocity:
$$v_t = \frac{ds}{dt} = \frac{d\theta}{dt}r = \omega r$$

Tangential acceleration:
$$a_t = \frac{dv_t}{dt} = \frac{d\omega}{dt}r = \alpha r$$